easyE-line

linear in-line actuators
Features:

- **Stroke length:** 50, 100, 150, 200, 250, 300, 350, 400, 500 and 750mm
- **Cable:**
 - easyE-35: 1m, 2X0.65mm² (AWG19), Ø = 4.8mm, black, Molex Mini-Fit Jr. 6 pin
 - easyE-50: 1m, 2X1.3mm² (AWG16), Ø=6.4mm, black, Molex Mini-Fit Jr. 6 pin
 - easyE-60: 1m, 2X1.3mm² (AWG16), Ø=6.4mm, black, Molex Mini-Fit Jr. 6 pin
- **Bending radius:** 6x cable diameter
- **Materials:** Motor and actuator tube are powder coated steel or stainless steel
 - Piston rod is aluminum (easyE-35) or stainless steel (easyE-50 and easyE-60)
 - Front and rear brackets are PA or Aluminium
- **Protection class:** IP66 (standard), IP68, IP69K, ATEX
- **Max. static load/ Self locking force:**
 - easyE-35: PA brackets: 2000N Alu/AISI: 5400N
 - easyE-50: PA brackets: 4700N Alu/AISI: 16800N
 - easyE-60: Alu/AISI: 16800N
 - Depending on stroke length for push-applications
- **Temperature:** -5°C to +70°C
- **Duty cycle:** Max. 10% or 2 minutes in use followed by 18 minutes rest

Please Note:

- Power supply without over-current protection can cause serious damage to the actuator at mechanical end-stop or when actuator is overloaded in another way
- Effective stroke is reduced by up to 3mm
- Radial forces might have an adverse affect on the performance or lead to damage of the actuator
- Keep piston tube clean
- Longer cable lengths may cause voltage drop which affects the performance of the actuator
- For medical applications maximum ambient temperature is 48°C
- Function of the actuator is subject to the settings of the control box
- The dust and water sealing of IP68/IP69K actuators might affect their performance
- All specifications are for 25 °C ambient – low temperature might affect performance

Please note the important advices at www.bansbach.de/easyE-line
Recommended mounting methods:

- Do not clamp actuators on tubing
- Always keep both brackets mounted in the same orientation and ensure to flush mount actuator
- Brackets must always be able to rotate on axels in mountings

Table: Specifications

<table>
<thead>
<tr>
<th></th>
<th>EL</th>
<th>ØZ1</th>
<th>ØZ2</th>
<th>ØKS</th>
<th>Clevis lead</th>
<th>Hall rear</th>
<th>UL/EN60.601</th>
<th>IP68/IP69K</th>
</tr>
</thead>
<tbody>
<tr>
<td>easyE-35
 Gear ratio: C, D, E, F
Gear ratio: G, H</td>
<td>stroke+160*
stroke+170*</td>
<td>35</td>
<td>20</td>
<td>20</td>
<td>+10</td>
<td>+10</td>
<td>+10</td>
<td>+11</td>
</tr>
<tr>
<td>easyE-50
 Gear ratio: C, D, E, F
Gear ratio: G, H</td>
<td>stroke+240
stroke+255</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>-</td>
<td>+15</td>
<td>+15</td>
<td>+14</td>
</tr>
<tr>
<td>easyE-60
 Gear ratio: all ratios</td>
<td>stroke+358</td>
<td>60</td>
<td>50</td>
<td>35</td>
<td>-</td>
<td>+15</td>
<td>+15</td>
<td>+25</td>
</tr>
</tbody>
</table>

If stroke >500mm: stroke+167, if stroke >700mm: stroke+212
Choose your actuator:

1. Model:
 - easyE-35
 - easyE-50
 - easyE-60

2. Stroke length:
 - 50, 100, 150, 200, 250, 300, 350, 400, 500 and 750mm (others on request)

3. Gear ratio:
 - C, D, E, F, G, H (speed and load see table)

4. Voltage:
 - 12V DC (only easyE-35 and easyE-50)
 - 24V DC
 - 24V EN/UL 60.601

5. Temperature:
 - standard (-5°C - +70°C)
 - low (-40°C - +70°C)
 - high (-5°C - +90°C)

6. Cable length:
 - 1m - 9m (others on request)

7. Connector:
 - no connector
 - Molex minifit

8. Material:
 - Standard steel
 - AISI 316

9. Protection class:
 - IP66 (standard)
 - IP68
 - IP69K
 - ATEX zone 22, group II 3D compliant

9. Certification (only easyE-35 and easyE-50):
 - EN/UL/CSA 60.601 (only 24 V DC)

10. Hall sensor:
 - no (standard)
 - yes (cable will change)

11. Low noise:
 - no (standard)
 - yes (no stainless steel)

12. Color:
 - Black (standard)
 - Available in all RAL colors

13. Connecting parts
Connecting parts „motor side“:

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø1</th>
<th>L5</th>
<th>SW</th>
<th>A</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1M</td>
<td>10</td>
<td>17.5</td>
<td>28</td>
<td>6</td>
<td>Polyamid (PA)</td>
<td>5400 N</td>
</tr>
<tr>
<td>B1M</td>
<td>10</td>
<td>17.5</td>
<td>28</td>
<td>-</td>
<td>stainless steel</td>
<td>2000 N</td>
</tr>
<tr>
<td>C1M</td>
<td>10</td>
<td>17.5</td>
<td>28</td>
<td>6</td>
<td>stainless steel</td>
<td>5400 N</td>
</tr>
</tbody>
</table>

easyE-50

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø1</th>
<th>L5</th>
<th>SW</th>
<th>A</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2M</td>
<td>16</td>
<td>25</td>
<td>40</td>
<td>12.3</td>
<td>Polyamid (PA)</td>
<td>16800 N</td>
</tr>
<tr>
<td>B2M</td>
<td>16</td>
<td>25</td>
<td>40</td>
<td>-</td>
<td>stainless steel</td>
<td>4700 N</td>
</tr>
<tr>
<td>C2M</td>
<td>16</td>
<td>25</td>
<td>40</td>
<td>12.3</td>
<td>stainless steel</td>
<td>16800 N</td>
</tr>
</tbody>
</table>

easyE-60

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø1</th>
<th>L5</th>
<th>SW</th>
<th>A</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3M</td>
<td>16</td>
<td>30</td>
<td>50</td>
<td>12.3</td>
<td>Polyamid (PA)</td>
<td>16800 N</td>
</tr>
<tr>
<td>C3M</td>
<td>16</td>
<td>30</td>
<td>50</td>
<td>12.3</td>
<td>stainless steel</td>
<td>16800 N</td>
</tr>
</tbody>
</table>

with spherical bearings

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø1</th>
<th>L5</th>
<th>SW</th>
<th>A</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1M</td>
<td>8</td>
<td>17.5</td>
<td>28</td>
<td>-</td>
<td>Polyamid (PA)</td>
<td>5400 N</td>
</tr>
</tbody>
</table>

easyE-50

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø1</th>
<th>L5</th>
<th>SW</th>
<th>A</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2M</td>
<td>12</td>
<td>25</td>
<td>40</td>
<td>-</td>
<td>Polyamid (PA)</td>
<td>11000 N</td>
</tr>
</tbody>
</table>

Code | Ø1 | L5 | SW | A | S | Material | Max static load |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F1M</td>
<td>10</td>
<td>17.5</td>
<td>28</td>
<td>6</td>
<td>6.2</td>
<td>Polyamid (PA)</td>
<td>5400 N</td>
</tr>
<tr>
<td>G1M</td>
<td>10</td>
<td>17.5</td>
<td>28</td>
<td>-</td>
<td>4.2</td>
<td>Polyamid (PA)</td>
<td>2000 N</td>
</tr>
<tr>
<td>H1M</td>
<td>10</td>
<td>17.5</td>
<td>28</td>
<td>6</td>
<td>6.2</td>
<td>stainless steel</td>
<td>5400 N</td>
</tr>
</tbody>
</table>

easyE-50

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø1</th>
<th>L5</th>
<th>SW</th>
<th>A</th>
<th>S</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2M</td>
<td>16</td>
<td>25</td>
<td>40</td>
<td>12.3</td>
<td>6.2</td>
<td>Polyamid (PA)</td>
<td>16800 N</td>
</tr>
<tr>
<td>G2M</td>
<td>16</td>
<td>25</td>
<td>40</td>
<td>6</td>
<td>6.2</td>
<td>Polyamid (PA)</td>
<td>4700 N</td>
</tr>
<tr>
<td>H2M</td>
<td>16</td>
<td>25</td>
<td>40</td>
<td>12.3</td>
<td>6.2</td>
<td>stainless steel</td>
<td>16800 N</td>
</tr>
</tbody>
</table>

Connecting parts „piston rod side“:

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø2</th>
<th>L6</th>
<th>SW</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1K</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>Polyamid (PA)</td>
<td>5400 N</td>
</tr>
<tr>
<td>B1K</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>stainless steel</td>
<td>2000 N</td>
</tr>
<tr>
<td>C1K</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>stainless steel</td>
<td>5400 N</td>
</tr>
</tbody>
</table>

easyE-50

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø2</th>
<th>L6</th>
<th>SW</th>
<th>A</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2K</td>
<td>16</td>
<td>15</td>
<td>20</td>
<td>-</td>
<td>Polyamid (PA)</td>
<td>16800 N</td>
</tr>
<tr>
<td>B2K</td>
<td>16</td>
<td>15</td>
<td>20</td>
<td>-</td>
<td>Polyamid (PA)</td>
<td>4700 N</td>
</tr>
<tr>
<td>C2K</td>
<td>16</td>
<td>15</td>
<td>20</td>
<td>-</td>
<td>stainless steel</td>
<td>16800 N</td>
</tr>
</tbody>
</table>

easyE-60

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø2</th>
<th>L6</th>
<th>SW</th>
<th>A</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3K</td>
<td>16</td>
<td>17.5</td>
<td>25</td>
<td>18</td>
<td>Polyamid (PA)</td>
<td>16800 N</td>
</tr>
<tr>
<td>C3K</td>
<td>16</td>
<td>17.5</td>
<td>25</td>
<td>18</td>
<td>stainless steel</td>
<td>16800 N</td>
</tr>
</tbody>
</table>

with spherical bearings

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø2</th>
<th>L6</th>
<th>SW</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1K</td>
<td>8</td>
<td>12</td>
<td>18</td>
<td>Polyamid (PA)</td>
<td>5400 N</td>
</tr>
</tbody>
</table>

easyE-50

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø2</th>
<th>L6</th>
<th>SW</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2K</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>Polyamid (PA)</td>
<td>11000 N</td>
</tr>
</tbody>
</table>

Code | Ø2 | L6 | SW | S | Material | Max static load |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F1K</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>6.2</td>
<td>Polyamid (PA)</td>
<td>5400 N</td>
</tr>
<tr>
<td>G1K</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>4.2</td>
<td>Polyamid (PA)</td>
<td>2000 N</td>
</tr>
<tr>
<td>H1K</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>6.2</td>
<td>stainless steel</td>
<td>5400 N</td>
</tr>
</tbody>
</table>

easyE-50

<table>
<thead>
<tr>
<th>Code</th>
<th>Ø2</th>
<th>L6</th>
<th>SW</th>
<th>S</th>
<th>Material</th>
<th>Max static load</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2K</td>
<td>16</td>
<td>15</td>
<td>20</td>
<td>6.2</td>
<td>Polyamid (PA)</td>
<td>16800 N</td>
</tr>
<tr>
<td>G2K</td>
<td>16</td>
<td>15</td>
<td>20</td>
<td>6.2</td>
<td>Polyamid (PA)</td>
<td>4700 N</td>
</tr>
<tr>
<td>H2K</td>
<td>16</td>
<td>15</td>
<td>20</td>
<td>6.2</td>
<td>stainless steel</td>
<td>16800 N</td>
</tr>
</tbody>
</table>

PA-connecting parts are not available for gear ratio G and H.
Controllers:

EEL-S1
- For 1-3 actuators

FEATURES:
- Plug and play solution
- Handset or external switches
- for easyE-35 and easyE-50

TECHNICAL DETAILS:
- Supply: 230 V

EEL-S2-1
- For 1 actuator

FEATURES:
- Adjustable start and stop ramp
- Adjustable current limit
- Continuous-mode, impulse-mode
- Easy interfacing to PLC etc.
- DIN-rail fittable
- Hall sensors not supported

TECHNICAL DETAILS:
- Supply: 12 or 24 VDC
- Over voltage protection: 40 V
- Idle current: Approx. 15 mA
- Driving current: 10 A continuous, 16 A with duty cycle 50%, Max 16 A on duty 2 min

EEL-S2-3
- For 2 actuators

FEATURES:
- Precise position control from analog voltage input
- Adjustable start and stop ramp
- Settable current limit
- High momentary load capacity
- DIN-rail base fittable
- “Position reached” signal
- Hall sensors necessary

TECHNICAL DETAILS:
- Supply voltage: 12 or 24 VDC
- Motor current: 2x10A cont. 2x20A, 25% duty
- Current limit: 1-20A
- Pulse input freq.: Max 1kHz
- Pulse inputs pull-up/down: 10kΩ
- Control inputs: 0-1V=OFF; 4-30V=ON

EEL-S3
- For 1 actuator

FEATURES:
- Battery powered for mobile use
- 24VDC NiMh or Li-Ion battery
- Customized colors and foil design
- Wired handset

EEL-S3:
- 1 actuator
- up- and down function

TECHNICAL DETAILS:
- Supply: 24VDC NiMH or Li-Ion battery
- Idle current: < 5mA
- Current limit: 8A/ch max. total 12A
- Ramps 0-3 sec
- Connector type Molex Mini-Fit 6 pin

EEL-S4
- For 1-4 actuators

FEATURES:
- Adjustable current limit in and out
- Adjustable calibration speed and current
- Adjustable virtual min/max-position
- Individual or synchronous operation for drive 1-4 actuators

TECHNICAL DETAILS:
- Supply: 24VDC NiMH or Li-Ion battery
- Idle current: < 5mA
- Current limit: 8A/ch max. total 12A
- Ramps 0-3 sec
- Connector type Molex Mini-Fit 6 pin

The flyer is subject to technical alterations and printing mistakes.